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1. Introduction
• The hydroxyl radical (OH) is the most important day time oxidant, and controls the removal 

of pollutants and the formation of O3 in the troposphere.

• Comparisons of modelled OH to those observed in biogenic, low-NOx environments show 
consistent underpredictions, suggesting missing OH sources.1-4

• Recent studies4,5 have suggested that some fluorescence assay by gas expansion (FAGE) 
instruments may suffer from positive biases in OH measurement, where implementation of a 
chemical method to determine the OH background signal (OH-CHEM) resulted in substantial 
reductions in measured OH,4,5 and improved model agreement.4

• The Leeds FAGE instrument was modified to incorporate a new inlet pre-injector (IPI) 
sampling system to allow measurements of OH-CHEM, in order to assess the magnitude of 
any interference.
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2. The Leeds Ground-Based FAGE Instrument
• Ambient OH is measured using laser-induced fluorescence (LIF) at low pressure (~1.5 Torr), 

where on-resonance fluorescence at 308 nm is detected using a micro-channel plate (MCP), 
and the signal analysed by gated photon counting.

• The background signal is normally obtained by scanning the laser wavelength off-resonance 
from the OH transition (OH-WAVE).

• Hydroperoxy (HO2) and alkylperoxy (RO2) radicals may be measured after conversion to OH 
by reaction with NO.6,7

• Calibration: known concentrations of OH and HO2 are formed from the photolysis of water 
vapour at 184.9 nm in a turbulent flow (40 slm) of humidified zero air; radical concentrations 
are calculated from lamp flux, determined using chemical actinometry.

3. Inlet Pre-Injector (IPI): Design and Characterisation

Figure 1. Labelled SolidWorks model of the 
Leeds IPI. The yellow arrows indicate the 
direction of the sheath flow (see text).

• Similar to the design of Mao et al.,4 consisting of a 
4 cm length, 1.9 cm ID PFA cylinder embedded 
inside an aluminium housing (Fig. 1), which seals 
to the FAGE cell via an O-ring base flange (Fig. 
2A).

• The chemical scavenger is injected into the centre 
of the PFA flow tube via four 0.25 mm ID needles.

• In order to reduce radical wall losses, excess 
ambient air is drawn through the IPI to generate a 
sheath flow, which minimises the FAGE sampling 
of air from near the walls of the cylinder, housing 
and turret (Fig. 2).

Figure 2 (right). 
Side (A) and top (B) 
view photographs of 

the IPI system, 
mounted on the HOx

fluorescence cell.

Figure 3. OH remaining (±2σ) against OH 
reactivity (kOH) calculated in the flow tube, for 

propane and C3F6 scavengers.

• The presence of the IPI results in 
reproducible losses in sensitivity of ~40% 
for OH, and ~20% for HO2.

• Overall uncertainty in OH measurements is 
estimated at ~40% (2σ).

• The scavenging efficiency was determined 
for both propane and hexafluoropropene
(C3F6), with good agreement between the 
two scavengers (Fig. 3):

o The OH remaining is much larger than 
the theoretical, suggesting the 
efficiency is limited by mixing.

o Optimum removal of virtually 100% at 
kOH ~3000 s-1, equivalent to ~110 
ppmv propane.

o No evidence for internal removal.

4. ICOZA I: Introduction and IPI Results 
• The ICOZA (Integrated Chemistry of OZone in the Atmosphere) project 

took place at the Weybourne Atmospheric Observatory, Norfolk, UK, in  
July 2015.

• Aimed to improve understanding of ozone chemistry through integrated 
measurements of P (O3), the in situ ozone production rate (OPR), with 
comparisons to a range of other observational and model approaches.

• The WAO site is impacted by a range of contrasting air masses, from clean 
Arctic air to processed emissions from the UK (e.g. London) and Northern 
Europe.

Figure 4. Time series of ambient data obtained between 3-8 (left) and 12-14 July 2015 (right). Top: FAGE 
measurements of OH-WAVE (blue circles) and OH-CHEM (black squares); solid lines correspond to hourly 

averages. Bottom: filter radiometer measurements of J (O1D).

Figure 5 (left). 
Diurnal profile of 
measured OH-
WAVE (blue), 

OH-CHEM 
(black), their 

difference (red), 
and J (O1D) 

(orange line and 
shaded area). 

Error bars 
correspond to 
the 95% CI of 
the ambient 

variability within 
each time bin.

• Consecutive 
measurements of OH 
made using the two 
background methods 
(OH-WAVE and OH-
CHEM) generally show 
very good agreement 
(Figs. 4 and 5). 

• However, some 
discrepancies are 
observed for short 
periods of time (Fig. 4), 
the reasons for which 
are subject to ongoing 
investigation.

5. ICOZA II: FAGE Observations of OH, HO2 and RO2 Radicals, OH reactivity (kOH) and HCHO

BST

Figure 6. Diurnal profiles of OH, HO2 and RO2 radicals (A-C), 
J(O1D) (A), and OH reactivity (D) measured between 29 June 

and 17 July 2015, and HCHO measured between 7-17 July 
2015 (D). Error bars correspond to the 95% CI of the 

ambient variability within each time bin.
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Figure 7. Time series of various measurements on 30 June and 1 July 
2015, showing the O3 pollution event starting at ~12:00 on 1 July. The 

solid lines in panels A-C correspond to 30 min averages. Not visible in panel 
E is a spike in NO to 20 ppbv at ~16:00 on 1 July. Temperature data 

provided by WAO. HCHO data not available on these days.

• Simultaneous observations of HOx and ROx were made using two 
side-by-side fluorescence cells:

o Cell 1 (HOx) – measures OH and HO2 radicals consecutively
o Cell 2 (ROx) – measures HO2* and RO2 radicals consecutively
o HO2* = “real” HO2 + a small interference from certain RO2

radicals;6,7 differences between RO2, HO2* and HO2 allow for 
partially speciated measurements of RO2,

7 i.e. between simple 
(short-chain alkane) and complex (long-chain alkane, alkene 
and aromatic) RO2

• Measurements of total OH reactivity (kOH), the pseudo first-order 
loss rate of OH, were made using another FAGE instrument, which 
sampled from the Leeds container roof; formaldehyde (HCHO) 
observations were made using a separate LIF instrument situated in 
the main WAO building.

• A summary of ICOZA FAGE measurements is provided by the 
diurnal profiles shown in Fig. 6:

o High midday OH (~6 × 106 molecule cm-3)
o HO2 and RO2 radicals exhibit maxima in the afternoon 

(~15:00)
o All radical species observed at night (OHwave interference?)
o RO2:HO2 close to 1:1, with RO2 dominated by simple RO2

• Ozone pollution event observed on 1 July 2015 (Fig. 7):
o Air mass change from ESE to S (i.e. sea to land)
o Sharp rises in temperature and O3, which eventually reaches 

~110 ppbv, accompanied by a reduction in NO
o Concomitant increases in radical concentrations, with very 

high levels of OH observed (>1 × 107 molecule cm-3)
o P (O3) calculated from radical and NOx measurements
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