

Measurements of IO in the tropical marine boundary layer using laser-induced fluorescence spectroscopy

National Centre for Atmospheric Science

Hannah Walker (cmhmb@leeds.ac.uk), Trevor Ingham, Ru-Jin Huang, Daniel Stone, and Dwayne Heard

1 Introduction

Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere (SHIVA)

- Halogenated very short-lived substances (VSLS) are emitted from oceans by macroalgae and microalgae
- Ascending warm air over tropical oceans transports halogenated VSLS to the stratosphere
- Halogens are responsible for global-scale catalytic stratospheric ozone depletion and formation of the Antarctic ozone hole
- The SHIVA measurement campaign combines ship-borne, aircraft-based and ground-based measurements in and over the South China Sea and the Sulu Sea, and around the coast of Malaysian Borneo (see map in section 4)
 Aircraft Deduce uncertainties in an event of bala reported V/OLC measurements and events.
- Aims: 1) Reduce uncertainties in amount of halogenated VSLS reaching the stratosphere, and associated ozone depletion;
 - 2) Investigate effects of changing climate on these processes

Tropospheric Iodine chemistry

Iodine-containing organic compounds

 (e.g. CH₃I, CH₂I₂) and I₂ are produced by
 marine organisms and released from the
 oceans, providing the main source of
 iodine to the atmosphere (Saiz-Lopez *et al.*,
 2011)

$$\begin{array}{c} \mathsf{CH}_3\mathsf{I} + hv \to \mathsf{CH}_3 + \mathsf{I} \\ \mathsf{CH}_2\mathsf{I}_2 + hv \to \mathsf{CH}_2 + 2\mathsf{I} \\ \mathsf{I}_2 + hv \to 2\mathsf{I} \\ \mathsf{I} + \mathsf{O}_3 \to \mathsf{IO} + \mathsf{O}_2 \\ \mathsf{IO} + hv \to \mathsf{I} + \mathsf{O} \\ \mathsf{IO} + \mathsf{VO} \to \mathsf{I} + \mathsf{V} + \mathsf{O} \end{array}$$

• Atmospheric models predict a contribution to ozone loss from open ocean sources of iodine, and laboratory studies suggest an ozone-initiated route for release of iodine-containing compounds from the ocean (Martino *et al.*, 2009), in addition to strong coastal emissions

Significant IO concentrations have been measured in open

SO218 SHIVA Scientific Cruise onboard Research Vessel 'Sonne'

- 15th November 29th November 2011
- Singapore to Manila, Philippines, via northern coast of Malaysian Borneo (South China Sea) and Sulu Sea
- 26 scientists from the SHIVA consortium, the University of Malaya (Kuala Lumpur, Sarawak and Sabah), and the University of the Philippines Diliman, Quezon, providing a suite of oceanic and atmospheric measurements

 Photolysis of these compounds yields I atoms which react with ozone to yield IO (Alicke *et al.*, 1999) $IO + IO \rightarrow OIO$ $OIO + hv \rightarrow I + O_2$

- lodine oxides are responsible for new particle formation (McFiggans *et al.*, 2004; Saiz-Lopez *et al.*, 2006)
- Iodine chemistry impacts NO_x and HO_x ratios (Saiz-Lopez *et al.*, 2011)

ocean locations (e.g. Read, *et al.*, 2008; Mahajan *et al.*, 2010; Großmann *et al.*, 2012, Dix *et al.*, submitted), but uncertainty surrounds the importance of open ocean iodine chemistry (Mahajan *et al.*, 2012)

 The SHIVA project offers an excellent opportunity to measure IO in both coastal and open ocean environments, in the tropical marine boundary layer

Research Vessel Sonne during SO218 scientific cruise. Arrow marks position of LIF IO instrument in shipping container. Photo: Torsten Bierstedt.

2 The Leeds LIF IO Instrument

- Ambient air is drawn directly into a detection cell through a pinhole, at ~ 150 Torr (Whalley *et al.*, 2007; Commane *et al.*, 2011)
- Laser light at $\lambda \sim 445$ nm excites IO radicals
- Fluorescence at $\lambda \sim 512$ nm is detected using a photomultiplier tube and photon counter
- Instrument located in a specially designed 10 ft shipping container on the front deck of the ship, to maximise the chance of sampling clean air.
- Calibration by flowing nitrogen, CF₃I and N₂O down an aluminium tube containing a mercury pen-ray lamp:
 - $$\begin{split} \mathsf{N}_2\mathsf{O} + hv &\to \mathsf{N}_2 + \mathsf{O}(^1\mathsf{D}) \\ \mathsf{O}(^1\mathsf{D}) + \mathsf{N}_2 &\to \mathsf{O}(^3\mathsf{P}) \\ \mathsf{CF}_3\mathsf{I} + \mathsf{O}(^3\mathsf{P}) &\to \mathsf{IO} + \mathsf{CF}_3 \end{split}$$

- The instrument was calibrated before, during and after the cruise
- Limit of detection = 0.3 pptv for 30 minute averaging period

B I₂ denuder tube sampling system

- I₂ is an important measurement when considering sources of IO in the marine boundary layer
- Measurements made using the University of Mainz coupled diffusion denuder system for separation and quantification of I₂, ICI and HOI (Huang *et al.*, 2010)
- Glass tubes coated on inside with 1,3,5-Trimethoxybenzene for ICI and HOI, and α -cyclodextrin for I₂
- Ambient air drawn through tubes at 500 mL min⁻¹ for 30 minutes per sample
- Tubes positioned on the port side of the front deck of the ship
- Analysis of concentration by gas chromatography ion trap mass spectroscopy (GC/MS)
- I₂ Limit of detection = 0.17 pptv (for 30 minute samples at 500 mL min⁻¹) (Huang *et al.*, 2010)

Denuder tubes set up on port side of front deck. A = blank tube; B = ICI/HOI tube; $C = I_2$ tube

Results

Map of cruise track coloured by measured IO mixing ratio. Highest values were observed in the Sulu Sea. Diurnal stations were at point A, near Kuching, and point B, near Kota Kinabalu.

IO measurements

12 days of measurements Daytime mean IO = 1.2 pptv Daytime maximum IO = 2.2 pptv Night-time mean IO = 1.3 pptv Night-time maximum IO = 2.4 pptv IO Cruise average = 1.2 pptv **Maximum IO**

Maximum IO mixing ratio of 2.4
 pptv measured around 18:00
 on 26th November
 Location was in middle of Sulu

Sea, point 'C' on map, an area known for high biological activity

Night-time IO measurements

- IO was detected above the limit of detection on 10 out of the 11 nights during which the
- LIF instrument was operational during the cruise
- Reactions of I₂, CH₃I and CH₂I₂ with the nitrate radical, NO₃, have been proposed as a night-time source of IO (Chambers *et al.*,1992; Nakano *et al.*, 1995; Saiz-Lopez *et al.*, 2006)
 Significant levels of IO have been measured at night in other locations (e.g. 2.5 pptv at Mace Head (Saiz-Lopez *et al.*, 2006)) but measurements of IO at night in an open ocean
- environment have not previously been reported

I₂ measurements

12 days of measurements Daytime mean $I_2 = 1.3$ pptv Daytime maximum $I_2 = 5.4$ pptv Night-time mean $I_2 = 3.5$ pptv Night-time maximum $I_2 = 12.7$ pptv I_2 Cruise average = 2.0 pptv **Maximum I_2**

Maximum I₂ mixing ratio of 12.7 pptv measured around 22:00 on 18th November during diurnal station
Location was northern coast of Borneo, near Kuching (point 'A' on map) where several large rivers flow into the sea

Local Time of Day

Diurnal profile of I_2 for the whole cruise, showing higher values at night (shaded) than in the day, due to photolysis

00:00 04:00 08:00 12:00 16:00 20:00 00:00 Local Time of Day

Diurnal profile of IO for the whole cruise, showing similar values during day and night (shaded).

Comparison with concurrent IO measurements

- IO was measured by the University of Heidelberg cavity-enhanced DOAS (CE-DOAS) (Pöhler *et al.*, 2012) and the University of Bremen multi-axis DOAS (MAX-DOAS) (Wittrock *et al.*, 2004) during the cruise
- Reasonable agreement between LIF and MAX-DOAS (no clear detection by CE-DOAS)
 Elevated IO measured by MAX-DOAS in Sulu Sea, as for LIF measurements
 MAX-DOAS: mean IO ~ 1.0 pptv; max ~ 2.3 pptv

Time series of IO (black), CH_3I (red) and I_2 (blue) for days when LIF instrument was operational. IO and CH_3I are both elevated during the second half of the cruise. CH_3I data courtesy of Elliot Atlas

5 Summary and Outlook

 Significant levels of IO measured in-situ during daytime and night-time in the tropical marine boundary layer

- Open ocean and coastal environments encountered
- Maximum IO (2.4 pptv) similar to concentrations measured in this region previously (e.g. 2.2 pptv by MAX-DOAS during TransBrom project; K. Großmann *et al.*, 2012)

• Box modelling will be used to predict IO concentrations based on measurements of longerlived species

References

B. Alicke, K. Hebestreit *et al.*, *Nature*, 397, 572, **1999**B. J. Allan, G. McFiggans *et al.*, J. *Geophys. Res.*, 105, 14363, **2000**J. B. Burkholder, J. Curtius *et al.*, *Atmos. Chem. Phys.*, 4, 19, **2004**R. M. Chambers *et al.*, J. Phys. Chem., 96, 3321, **1992**W. L. Chameides and D. J. Davis, J. Geophys. Res., 85, 7353, **1980**R. Commane, K. Seitz *et al.*, *Atmos. Chem. Phys.*, 11, 6721, **2011**K. Großmann, U. Frieß *et al.*, *Atmos. Chem. Phys. Discuss.*, 12, 27475 **2012**R-J. Huang, X. Hou *et al.*, *Environ. Sci. Technol.*, 44, 5061-5066, **2010**M. Martino, G. Mills *et al.*, *Geophys. Res. Lett.*, 36, L01609, **2009**A. Mahajan, J. M. C. Plane *et al.*, *Atmos. Chem. Phys.*, 10, 4611-4624, **2010**A. Mahajan, J. C. Gómez Martín *et al.*, *Atmos. Chem. Phys.*, 10, 4611-4624, **2010**G. McFiggans, J. M. C. Plane *et al.*, *J. Geophys. Res.*, 105, 14371, **2000**G. McFiggans, H. Coe *et al.*, *Atmos. Chem. Phys.*, 4, 701-713, **2004**Y. Nakano *et al.*, *J. Phys. Chem. A*, 109, 6527, **2005**

D. Pöhler, M. Horbanksi *et al.*, *Geophys. Res. Abstr.*, 14, EGU2012-10471, 2012
A. Saiz-Lopez and J. M. C. Plane, *Geophys. Res. Lett.*, 31, L04112, 2004
A. Saiz-Lopez, J. M. C. Plane *et al.*, *Atmos. Chem. Phys.*, 6, 883-895, 2006
A. Saiz-Lopez, J. A. Shillito *et al.*, *Atmos. Chem. Phys.*, 6, 1513-1528, 2006
A. Saiz-Lopez, J. M. C. Plane *et al.*, *Atmos. Chem. Phys.*, 6, 1513-1528, 2006
A. Saiz-Lopez, J. M. C. Plane *et al.*, *Atmos. Chem. Phys.*, 6, 1513-1528, 2006
A. Saiz-Lopez, J. M. C. Plane *et al.*, *Atmos. Chem. Phys.*, 6, 1513-1528, 2006
A. Saiz-Lopez, J. M. C. Plane *et al.*, *Chem. Rev.*, 112, 1773-1804, 2011
A. Saiz-Lopez and R. Von Glasow, *Chem. Soc. Rev.*, 41, 6448-6472, 2012
R. Vogt, R. Sander *et al.*, *J. Atmos. Chem.*, 32, 375-395, 1999
L. K. Whalley, K. L. Furneaux *et al.*, *J. Atmos. Chem.*, 58, 19-39, 2007
F. Wittrock, H. Oetjen *et al.*, Atmos. Chem. Phys., 4, 955-966, 2004
http://shiva.iup.uni-heidelberg.de

Acknowledgements

Thanks to **Johannes Lampel** (U. Heidelberg) and **Folkard Witttrock** (U. Bremen) for IO data measured during the SHIVA fieldwork. Thanks to **Elliot Atlas** (Rosenstiel School of Marine and Atmospheric Sciences, Miami) for measurements of CH_3I . SHIVA is an EU funded FP-7 project - call **ENV.2008.1.1.2.1**